【CICC原创】复杂动态环境下多无人机目标跟踪的分布式协同轨迹规划方法发表时间:2024-09-18 10:11 (《指挥与控制学报》刊文精选) 引用格式 王孟阳,张栋,唐硕,等. 复杂动态环境下多无人机目标跟踪的分布式协同轨迹规划方法 [J]. 指挥与控制学报,2024,10(2):197-212 WANG M Y, ZHANG D, TANG S, et al. A distributed collaborative trajectory planning method for multi-UAV Targets tracking in complex dynamic environment[J]. Journal of Command and Control, 2024, 10(2): 197-212 摘要 针对复杂威胁环境下多无人机协同跟踪动态目标的问题,提出了一种多策略改进灰狼优化算法(multi-strategy improved grey wolf optimization,MSIGWO)的分布式模型预测控制方法。通过对多无人机跟踪动态飞行目标场景问题描述,考虑无人机运动学、相对运动学、战场复杂威胁、机间距离和视场传感器等约束,建立了多无人机协同跟踪动态目标的数学模型;基于分布式模型预测控制设计了多无人机协同轨迹在线优化求解框架,提出了一种改进灰狼算法作为分布式轨迹规划求解策略,通过控制参数自适应调整策略,最优位置学习更新策略以及跳出局部最优解策略来增强种群多样性,进而提升算法的优化求解能力;应用数值仿真和半实物仿真验证了所提出策略和方法的有效性。仿真结果表明:提出的多无人机分布式协同轨迹规划方法能够在有效避开动态环境障碍的条件下协同跟踪动态目标,具有较优的跟踪效能。 多无人机协同技术是目前研究热点[1-2], 具有重要的军事应用价值和民用应用前景, 广泛应用于战场态势侦察、 通信中继、 森林防火、 智慧城市等[3-7], 其中, 动态飞行目标的持续跟踪和监视是实现战术目标的关键任务[8], 由于战场威胁或复杂地形可能遮盖无人机的传感器视场导致定位准确度降低, 因此, 多个无人机协同能够扩大传感器视野范围, 通过多机信息持续共享等提升对动态目标的协同持续跟踪效果[9]。 多机协同动态轨迹规划技术是实现目标跟踪及定位等任务的关键技术[10-11], 本文将其定义为在线实时协同轨迹优化问题。基于平台控制技术和智能规划技术的融合, 在非结构化和动态环境中, 既要保证无人机规避威胁, 又要实现目标监视, 因此, 需要提出一种高效的多机协同控制策略和无人机在线轨迹生成方法。文献[12]以最小化能耗和最大化跟踪时间为目标交替优化无人机对移动节点充分覆盖的三维轨迹;文献[13]针对复杂环境下无人机目标跟踪问题, 提出了一种结合强化学习算法和栅极循环单元的无人机目标跟踪方法, 能够驱动无人机自主飞行决策并完成目标跟踪, 但研究的无人机模型为旋翼无人机, 同时未考虑多机跟踪目标的时间窗差异, 不能充分体现多机协同优势;文献[14]针对多无人机对动态入侵目标的实时轨迹跟踪轨迹优化精度差的问题, 提出了一种耦合模拟退火机制的粒子群算法进行轨迹优化, 但研究的问题局限于二维跟踪轨迹的研究;文献[15]考虑目标轨迹随机变化的场景, 将自适应差分进化算法与纳什优化相结合进行全局优化, 自适应调整各无人机轨迹, 提高了跟踪精度和稳定性, 但研究的实时场景仅考虑目标轨迹的实时随机变化, 未研究动态战场环境下的实时目标跟踪轨迹优化;文献[16]研究了无威胁环境下多机共享实时位置及目标信标到达时间差协同定位跟踪目标, 目标动力学采样过程中仅需要一次通信数据处理, 需要较少的通信和计算负载。此外, 文献[17-18]将微分几何、 马尔可夫决策方法也应用于多机三维轨迹规划过程中, 但该类研究均未考虑复杂环境下多机的视场传感器和通信约束。 针对复杂动态环境下多机协同目标跟踪轨迹在线规划问题, 本文提出了一种基于分布式模型预测控制的持续跟踪方法, 以跟踪目标的时间为优化指标, 以传感器扫描能力为约束, 建立了多机协同目标跟踪在线轨迹规划数学模型。模型预测控制是一种典型持续跟踪方法, 本质是有限时域的最优控制问题[19]。模型预测控制方法有两种主要形式, 分别为集中式模型预测控制(centralized model predictive control, CMPC)和分布式模型预测控制(distributed model predictive control, DMPC), DMPC可将多无人机复杂系统整体优化问题分到各个子系统进行解决, 无人机共享态势信息独立地优化自身轨迹, 存在多个计算单元, 相比CMPC降低节点计算量, 鲁棒性更强, 系统维护简单, 计算和通信延迟更少, 已被证明是解决此类在线目标跟踪/轨迹优化的最佳选择[20], 因此, 本文采用DMPC方法进行目标跟踪的轨迹优化框架。 基于自然启发的遗传算法、 粒子群算法、 狮群算法、 鸽群算法(pigeon-inspired optimization, PIO)等智能优化方法已被应用于搜索DMPC过程最优解, 然而仍存在求解效率低, 容易陷入局部最优等问题[21-25]。灰狼优化算法(grey wolf optimization, GWO)是基于自然界狼群领导和狩猎机制提出的一种群体智能优化算法, 相比其他优化方法模型简单, 具有较低的计算复杂度和较高的求解精度[26-27], 因此, 本文引入生物群体灰狼的特性的狼群算法求解DMPC优化问题[28-29]。针对GWO求解过程中存在种群多样性不足、 求解过早收敛等问题, 文献[30]提出了一种改进GWO算法(improved-GWO, IGWO)来搜索问题的最优解, 但没有考虑迭代优化过程中种群的实时变化情况, 在迭代初期的收敛速度较快, 在迭代后期种群多样性降低, 导致优化效果不稳定, 易陷入局部最优。因此, 为了提高IGWO算法的收敛速度, 提升算法搜索能力, 优化后期避免局部最优, 本文提出控制参数自适应调整策略, 最优学习位置更新策略和跳出局部最优解策略以提升IGWO算法问题解能力, 将其作为DMPC优化过程中求解器, 实现多机协同目标跟踪的轨迹优化求解, 并通过数字仿真和半实物仿真验证本文提出方法的有效性。 Reference [1] BIAN H, TAN Q, ZHONG S, et al. Assessment of UAM and drone noise impact on the environment based on virtual flights[J]. Aerospace Science and Technology, 2021, 118: 106996. [2] 张婷婷, 蓝羽石, 宋爱国. 无人集群系统自主协同技术综述 [J]. 指挥与控制学报, 2021, 7(2): 127-136. ZHANG T T, LAN Y S, SONG A G. An overview of autonomous collaboration technologies for unmanned swarm systems[J]. Journal of Command and Control, 2021, 7(2): 127-136. (in Chinese) [3] 胡腾, 刘占军, 刘洋, 等. 多无人机3D侦察路径规划 [J]. 系统工程与电子技术, 2019, 41(7): 1551-1559. HU T, LIU Z J, LIU Y, et al. 3D surveillance path planning for multi-UAVs[J]. System Engineering and Electronics, 2019, 41(7): 1551-1559. (in Chinese) [4] HE H, ZHANG S, ZENG Y, et al. Joint altitude and beamwidth optimization for UAV-enabled multiuser communications[J]. IEEE, 2018, (2): 1-35. [5] 刘典雄, 徐煜华, 汪李峰, 等. 面向空地协同的有/无人系统自主传输技术 [J]. 指挥与控制学报, 2021, 7(2): 160-166. LIU D X, XU Y H, WANG L F, et al. Self-organizing transmission in air-ground collaborative manned-unmanned system[J]. Journal of Command and Control, 2021, 7(2): 160-166. (in Chinese) [6] MAZA I, CABALLERO F, CAPITAN J, et al. Experimental results in multi-UAV coordination for disaster management and civil security applications[J]. Journal of intelligent & robotic systems, 2011, 61(1): 563-585. [7] ZAKRIA Q, FAHIM U, HAFIZ S M, et al. Addressing disasters in smart cities through UAVs path planning and 5G communications: a systematic review[J]. Computer Communications, 2021, 168: 114-135. [8] ZHANG W, SONG K, RONG X, et al. Coarse-to-fine UAV target tracking with deep reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2018, 16(4): 1522-1530. [9] WU J F, WANG H L, LI N, et al. Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by adaptive grasshopper optimization algorithm[J]. Aerospace Science and Technology, 2017, 70: 497-510. [10] DOGANCAY K. UAV path planning for passive emitter localization[J]. IEEE Transactions on Aerospace and Electronic systems, 2012, 48(2): 1150-1166. [11] 王原, 邢立宁, 陈盈果, 等. 基于多目标优化的自组织无人机集群航迹规划方法 [J]. 指挥与控制学报, 2021, 7(3): 257-268. WANG Y, XING L N, CHEN Y G, et al. Self-organized UAV swarm path planning based on multi-objective optimization[J]. Journal of Command and Control, 2021, 7(3): 257-268. (in Chinese) [12] DANDAPAT J, GUPTA N, AFARWAL S, et al. Service duration maximization for continuous coverage in UAV-assisted communication system[J]. IEEE Communications Letters, 2022, 26(10): 2445-2449. [13] JISEON M, SAVVAS P, CHRISTOS L, et al. Deep reinforcement learning multi-UAV trajectory control for target tracking[J]. IEEE Internet of Things Journal, 2021, 20(8): 15441-15455. [14] WANG Y A, LI K, HAN Y, et al. Distributed multi-UAV cooperation for dynamic target tracking optimized by an SAQPSO algorithm[J]. ISA transactions, 2022, 129: 230-242. [15] YAO P, WANG H L, JI H X. Multi-UAVs tracking target in urban environment by model predictive control and improved grey wolf optimizer[J]. Aerospace Science and Technology, 2016, 55: 131-143. [16] DOOSTMOHAMMADIAN M, TAGHIEH A, ZARRABI H. Distributed estimation approach for tracking a mobile target via formation of UAVs[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(4): 3765-3776. [17] JIANG W, LYU Y X, LI Y F, et al. UAV path planning and collision avoidance in 3D environments based on POMPD and improved grey wolf optimizer[J]. Aerospace Science and Technology, 2022, 121: 107314. [18] ZHANG M, ZHENG C M, HUANG K. Fixed-wing UAV guidance law for ground target over-flight tracking[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 384-392. [19] HAFEZ A T, MARASCO A J, GIVIGI S N, et al. Solving multi-UAV dynamic encirclement via model predictive control[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2251-2265. [20] QI S, YAO P. Persistent tracking of maneuvering target using IMM filter and DMPC by initialization-guided game approach[J]. IEEE Systems Journal, 2019, 13(4): 4442-4453. [21] HONG S H, CORNELIUS J, WANG Y, et al. Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control[J]. SN Applied Sciences, 2019, 1(11): 1-16. [22] SAADAOUI H, El BOUANANI F. Information sharing based on local PSO for UAVs cooperative search of unmoved targets[C]// 2018 International Conference on Advanced Communication Technologies and Networking (CommNet). IEEE, 2018: 1-6. [23] YAO P, WANG H L. Dynamic Adaptive Ant Lion Optimizer applied to route planning for unmanned aerial vehicle[J]. Soft Computing, 2017, 21(18): 5475-5488. [24] DENG Y, DUAN H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization[J]. Nonlinear Dynamics, 2016, 85(1): 97-106. [25] 廖剑, 高向阳, 闫实, 等. 基于MPC-PIO的无人飞行器集群编队重构控制 [J/OL]. 北京航空航天大学学报. https://doi.org/10.13700/j.bh.1001-5965.2022.0398. LIAO J, GAO X Y, YAN S, et al. Formation reconfiguration control of UAV swarm based on MPC-PIO[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2022.0398. (in Chinese) [26] MIRJALILI S, MIRJALILI S M, LEWIS. A Grey Wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61. [27] 周同乐, 陈谋, 朱荣刚, 等. 基于狼群算法的多无人机协同多目标攻防满意决策方法 [J]. 指挥与控制学报, 2020, 6(3): 251-256. ZHOU T L, CHEN M, ZHU R G, Attack-defense satisficing decision-making of multi-UAVs cooperative multiple targets based on WPS algorithm[J]. Journal of Command and Control, 2020, 6(3): 251-256. (in Chinese) [28] MIRJALILI S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015, 43(1): 150-161. [29] ELSISI M. Improved Grey Wolf optimizer based on opposition and quasi learning approaches for optimization: Case study autonomous vehicle including vision system[J]. Artificial Intelligence Review, 2022: 1-24. [30] NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. [31] 王孟阳, 张栋, 唐硕, 等. 基于动态联盟策略的无人机集群在线任务规划方法 [J/OL]. 兵工学报. http://kns.cnki.net/ kcms/detail/11.2176.TJ.20220916.1427.002.html. WANG M Y, ZHANG D, TANG S, et al. UAV swarm cooperative mission planning method based on dynamic allocation strategy[J/OL]. ACTA Armamentarii. http://kns.cnki.net/kcms/detail/11.2176.TJ.20220916.1427.002.html. (in Ch- inese) [32] HAFEZ A T, MARASCO A J, GIVIGI S N, et al. Solving multi-UAV dynamic encirclement via model predictive control[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2251-2265. [33] 吴健发, 王宏伦, 王延祥, 等. 无人机反应式扰动流体路径规划 [J/OL]. 自动化学报. http://doi.org/10.16383/j.aas.c2 10231 WU J F, WANG H L, WANG Y X, et al. UAV reactive interfered fluid path planning[J/OL]. ACTA Automatica Sinica. http://doi.org/10.16383/j.aas.c210231. (in Chinese) [34] 胡耀龙, 冯强, 海星朔, 等. 基于自适应学习策略的改进鸽群优化算法 [J]. 北京航空航天大学学报, 2020, 46(12): 2348-2356. HU Y L, FENG Q, HAI X S, et al. Improved pigeon-inspired optimization algorithm based on adaptive learning strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2348-2356. (in Chinese) |